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FOREWORD

This report describes the results of work performed by Mechanical Technology
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The NASA Project Manager for this investigation was Mr. James Dunn of the

Brayton Cycle Branch - Lewis Research Center, Cleveland, Ohio. The MTI

Project Manager was Dr. Robert H. Badgley. Mr. Juergen M. Tessarzik was

responsible for the experimental portion of the investigation, and was

assisted in that effort by Mr. Walter Spodnewski. The system response

analysis was the responsibility of Dr. Thomas Chiang. The dynamic analysis

of the damper was performed by Mr. Harlan White and the dampers were de-

signed by Mr. John L. Dunne.
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ABSTRACT

A bearing damper, operating on the support flexure of a pivoted pad in a

tilting-pad type gas-lubricated journal bearing, has been designed, built,

and tested under externally-applied random vibrations.

The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 Kwe turbogenerator

had previously been subjected in the MTI Vibration Test Laboratory to ex-

ternal random vibrations, and vibration response data had been recorded and

analyzed for amplitude distribution and frequency content at a number of

locations in the machine. Based upon data from that evaluation, a piston-

type damper was designed and developed for each of the two flexibly-supported

journal bearing pads (one in each of the two three-pad bearings). A mod-

ified BRU, with dampers installed, has been re-tested under random vibration

conditions. Root-mean-square vibration amplitudes were determined from the

test data, and displacement power spectral density analyses have been

performed. Results of these data reduction efforts have been compared with

vibration tolerance limits.

Results of the tests indicate significant reductions in vibration levels in

the bearing gas-lubricant films, particularly in the rigidly-mounted pads.

The utility of the gas-lubricated damper for limiting rotor-bearing system

vibrations in high-speed turbomachinery has thus been demonstrated.
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SUMMARY

High-speed rotating machinery, such as turboalternators, gas turbine engines
and the like, can be particularly susceptible to externally-applied vibra-
tions. Such vibrations can be due to vehicle operational mode changes (e.g.,
the landing of an aircraft or the restart of a rocket engine), to vehicle
buffeting by air or water, and to normal operating events (e.g., rotor-induced
vibration in helicopters). These external vibrations, depending upon their
frequency content, duration, and severity, can cause significant internal
vibration amplitudes within the exposed turbomachinery, with attendant over-
stresses, contacts between closely-spaced rotating components, and fatigue
of structural members. The NASA Brayton Rotating Unit (BRU) is an example
of a turbomachine which must be protected from such effects.

In the case where the external vibration causes high vibration amplitudes
because of coincidences with one or more resonance frequencies, it is pos-
sible to detune the machinery system through changes to system mass and
stiffness elements. When such detuning is not possible (and in most cases
where the external vibration is broad-band in nature, detuning is not
practical), vibration energy must be extracted from the system through the
use of damping. This latter situation exists in the case of the BRU, an
inherently low-damping system which must tolerate exposure to broad-band
random vibration.

The program described herein included the design, fabrication, installation,
and testing of ambient gas-lubricated piston dampers in a modified BRU. The
dampers were designed to be exposed to the radial motion of one of the three
bearing pads in each of the BRU's journal bearings. This pad, which was
flexure-mounted, was found to follow the motion of the rotor quite closely
in earlier BRU vibration-mapping studies. Contacts between the rotor and
the remaining (rigidly-mounted) pads, were found to limit the externally-
applied vibration levels which could be tolerated by the bearings.

Comparisons between "before" and "after" test data indicate that significant

vibration reductions have been attained with the dampers installed
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INTRODUCTION

Externally-imposed vibrations can seriously endanger the integrity and

operating performance of rotating machinery. The severity of the threat is

largely dependent upon the response level of internal machine components

relative to the level of the externally-applied vibrations. Vibration-

induced contacts between rotating components or fatigue or overstress crack-

ing of flexing parts are the more typical modes of observed failures. In a

fluid-film or gas bearing supported rotor system, intermittent contacts

between rotor.and bearings may be an early indicator of distress, while

severe structural vibrations may be more typical for a lightweight, highly-

flexible gas turbine type of machine. In either case, the addition of in-

ternal vibration damping elements to the structure may be a viable and

effective alternative to the more traditional approach of external structural

vibration isolation.

This report presents a case study, which draws upon a previously conducted

analytical and experimental analysis of the responses of many internal .

components of the Brayton Rotating Unit, a gas turbine-driven alternator of

approximately 10 Kwe maximum output. Based upon the finding that the

flexures supporting the flexibly-mounted pivoted pad in each of the journal

bearings exhibit some of the largest vibration levels observed, remedial

bearing support dampers have been designed, built, and tested in the machine.

The design effort utilized the systematic mapping of component responses to

external sinusoidal and random vibrations, obtained before bearing support

dampers were installed in the BRU. It was aided by a number of analytical

response programs developed for that purpose and reported in References 1, 2,
and 3. A specific analysis directed towards a reduction in the vibration

response of the flexure supports for the journal bearing pads under the

influence of external random vibrations has been developed and is presented

in this report.
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JOURNAL BEARING FLEXURE REDESIGN FOR

VIBRATION ATTENUATION IN THE BRAYTON ROTATING UNIT

During portions of the Brayton Rotating Unit (BRU) vibration tests conducted

under Contract NASw-1713, as reported in Reference 1, inputs were applied

laterally (horizontal direction) to the BRU with its spin axis vertical. The

resulting test data, portions of which are shown in Figures 118 and 120 in

Reference 1, indicate that the gas-lubricant films of the solid-mounted

journal bearing pads have a vibration amplitude approximately 7.5 times

larger than that of the gas film of the flexure-mounted pad. The efforts

described herein are directed at a redesign of the pad-support elements to

reduce the gas-film vibration levels caused by both random and sinusoidal

vibration inputs.

Vibration Response Evaluation of Journal Bearing Support System for Different

Values of Flexure Stiffness and Damping

The BRU journal bearing pad-flexure system was modeled analytically as shown

in Figure 1. In this model, the rotor is allowed to move in both the x- and

y-directions. The pads, however, are assumed to move only in the radial

directions. The vibration input is assumed to be transmitted to the pads and

the rotor through the casing. This vibration input can be at an arbitrary

orientation, specified by the proper phase relationship between the peak

amplitudes xB and yB"

The model shown in Figure 1 has five degrees of freedom; the rotor has two

degrees of freedom, and each of the three pads has one. Based on this model,

an analysis was conducted to predict the forced vibration amplitudes of the

rotor, the three pads, and the pads relative to the casing, and the amplitudes

of the gas-film variations. All of the above amplitudes are divided by the

input vibration amplitude in the calculations to obtain amplitude ratios.

To illustrate the results obtained from the analysis, we consider as an example

the flexure-mounted pad-rotor system of the present BRU design. Let the system

be forced by a unit amplitude vibration input in the "12 o'clock" direction

(i.e., XB = 1 and yB = 0). The weight of the rotor is 21 pounds (9.5 Kg).
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Since there are two tilting-pad journal bearings, one at the turbine end and

one at the compressor end, the effective mass of the rotor at either end is

21/2 = 10.5 lb (4.3 Kg). Thus, m2 = 10.5 lb (4.3 Kg). The lumped mass of

the pad is estimated at 0.22 lb (0.1 Kg) (mI = m3 = m4 = 0.22 lb). The stiff-

ness and damping coefficients of the gas films of the pad are taken at their

respective nominal values, k2 = k2 = k3 = 53, 800 lb/in. (9.28 x 106 H) and

c 2 = c 2 = c 3 = 3.42 lb-sec/in. (598.9 -sec). The flexure in the "12 o'clock"2 3  m 6N
direction has a stiffness k = 2000 lb/in. (0.35 x 10 ), whereas the flexures

in the "8 o'clock" and "4 o'clock" directions have a stiffness of k = ki' =
N1 1250,000 lb/in. (43.78 x 10 m). (These are the "solid" mounts.) All the

flexures are assumed to have a damping coefficient of c = c = c = 0.1 lb-

sec/in. (17.5 m ), which is representative of the typically low levels ofm
damping found in "undamped" structures.

For a unit amplitude sinusoidal vibration input in the "12 o'clock" direction,
responses in terms of gas-film thickness variation and pad vibration amplitude

(relative to casing) were calculated and are plotted against frequency in

Figures 2 to 5; they are, respectively, amplitude ratio of the gas-film, thick-

ness variation of the pad in the "12 o'clock" direction, amplitude ratio of

the gas-film thickness variation of the pad in the "8 o'clock" direction,
amplitude ratio of the "12 o'clock" pad vibration relative to casing, and

amplitude ratio of the "8 o'clock" pad vibration relative to casing. When the

input excitation is in the "12 o'clock" direction, the gas'film thickness

variation and the pad vibration of the "4 o'clock" pad are identical to those

of the "8 o'clock" pad because of symmetry. The results for the "4 o'clock"

pad are thus not shown.

It is seen from Figures 2 to 5 that the lowest natural frequency of the system

is approximately 148 Hz, at which all amplitudes (and thus the amplitude ratios)

have peak values. The amplitude ratios with a larger flexure damping coeffi-

cient of 1 lb-sec/sec (175 N-sec ), are also indicated at the peaks. These are,m
as may be expected, somewhat smaller than those with a flexure damping co-

efficient of 0.1 ib-sec/in. (17.5 N-sec). Note that in this configuration, them
"8 o'clock" gas film has a larger peak amplitude ratio than the "12 o'clock"
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gas film as shown in Figures 2 and 3. Later, when different configurations

and flexure stiffness combinations are evaluated for their performances, this

larger peak amplitude ratio (in this case, 8.4 as shown in Figure 3) becomes

the quantity against which comparisons are made.

The amplitude ratio can be interpreted as the amplitude of vibration resulting

from and corresponding to an input vibration amplitude of unity. Therefore,

if the specification calls for different input amplitudes at different fre-

quencies, a factor which is called the "input weighting factor" should be in-

cluded to obtain meaningful results.

The specification for sinusoidal vibration input calls for a constant g-level

at 0.25 g over the frequency range of 5-35 Hz. The rotor support hardware at

each end of the existing BRU includes one soft flexure having a stiffness
6N

of 2000 lb/in. (0.35 x 106 ) and two hard flexures each having a stiffness
m N

of 250,000 lb/in. (43.78 x 10 -). The lowest natural frequency of

this system is calculated to be 148 Hz as indicated before. With the two hard
6N

flexures replaced by two 2000 lb/in. (0.35 x 10 -) flexures, the lowest

natural frequency would be 51 Hz, which is still considerably above the 5-35 Hz

range. The existing BRU thus has no resonant peak in the 5-35 Hz range, and

therefore has no difficulty meeting the specification for sinusoidal vibration

input.

The specification for random vibration input shown in Figure 10 in Reference 1

is acceleration power spectral density (PSD). The same specification expressed

in terms of displacement PSD is shown in Figure 6 herein. Note that for fre-

quencies greater than 100 Hz the acceleration PSD is constant, but the displace-

ment PSD varies as (Freq.) 4 . In the response analysis the input forcing

function is expressed in terms of displacement excitation. And from Figure 6,

it is clear that the displacement input is not constant throughout the frequency

spectrum. To take this factor into consideration, we take the area under the

PSD curve in Figure 6, at a frequency f, over a bandwidth of say, 1 Hz. This

area is, by definition, the mean square value of the displacement input at the

corresponding frequency f; and the square root of it is the RMS (root mean
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square) value of the displacement input at frequency f. Now we divide the

RMS value of the displacement input by the RMS value at 100 Hz. The ratio is

called the "input weighting factor" which is plotted versus frequency in

Figure 7. It is convenient to define

Weighted Variation = Amplitude Ratio x Input Weighting Factor

Response Amplitude x RMS Input Amplitude at f
Input Amplitude at f RMS Input Amplitude at f = 100 Hz

(1)
Response Amplitude

RMS Input Amplitude at f = 100 Hz

In the example in Figures 2 to 5, a resonance occurred at a frequency of

148 Hz. From Figure 7, the input weighting factor can be read as 0.44 at

148 Hz. The amplitude ratio of the gas-film thickness variation of the "12

o'clock" pad at resonance is 0.56, and the corresponding quantity for the "8

o'clock" pad is 8.3 as shown in Figures 2 and 3. From the definition in (1):

Weighted Gas-Film Variation of the "12 o'clock" Pad = 0.56 x 0.44 = 0.246

Weighted Gas-Film Variation of the "8 o'clock" Pad = 8.4 x 0.44 = 3.7.

For design calculation, only the maximum weighted gas-film variation is of

importance. Thus, with input in the "12 o'clock" direction,

Maximum Weighted Gas-Film Variation = 3.7.

Similarly, from Figures 4, 5, and 7

Maximum Weighted Pad Vibration Relative to Casing = 8.8.

In order to make a meaningful design comparison, the maximum weighted gas-film

variation and the maximum weighted pad vibration relative to casing are pre-

sented in Figures 8 and 9, respectively, for various flexure stiffness combina-

tions. Note that at least two of the three flexures are assumed to have the

same stiffness, and all three flexures are assumed to have the same damping

coefficients. Thus,

k1 = k1

c = C = c I  = cq1 1'
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The present BRU with k1 = kl = 250,000 lb/in. and k = 2000 lb/in. (43.78 x
6 a6N

106 and 0.35 x 106 , respectively) is the second one from the left. A value
N-sec

of c = 0.1 lb-sec/in. (17.5 N-se) is found to produce results which are quitem
representative of the experimental data presented in References 1 and 2.

Therefore, with c = 0.1 lb-sec/in. and with k1 = kl = 250,000 lb/in. and k =

2000 lb/in., the data points for the present BRU are shown in Figures 8 and 9

and accented by a small circle for easy identification and comparison with

other stiffness combinations and different values of the damping coefficient.

As marked on the abscissa of Figure 8, there are five discrete stiffness com-

binations. The combination of k = 2000 lb/in. and k1 = kl' = 250,000 lb/in.

represents the existing BRU with c = 0.1 lb-sec/in. The combination of k =
I 6N2000 lb/in. and kl = k = 250,000 lb/in. (43..78 x 106 N) and the combination

6N m
of k4 = kI = k1 = 18,000 lb/in. (3.15 x 10 y) are of particular interest

because with either of these two stiffness combinations the BRU journal pads

could be operated with a zero set up interference (see Reference 4). Such a

configuration might, for example, permit the elimination of the need for hydro-

static operation during BRU startup.

For each stiffness combination, the input excitation was first assumed to act

in the "12 o'clock" direction. In each case, the gas-film thickness variations

of the three pads were calculated. From these calculations, the maximum

weighted gas-film variation was obtained. The same computation was then

performed for inputs in the "9 o'clock" direction and in the "8 o'clock"

direction. It was found that for each of the five different stiffness com-

binations, the "12 o'clock" direction always yields the highest values of the

weighted maximum gas-film variation and weighted maximum pad vibration

relative to casing (it is these quantities which are shown in Figures 8 and 9,

respectively). The corresponding values for c = 1 lb-sec/in. and c = 5 lb-sec/
N-sec

in. (175 and 875.6 N-se) are also shown.m

Figure 8 indicates that without external damping (c = 0.1 lb-sec/in.) the

existing design (k4 = 2000 lb/in. and kl = k I = 250,000 lb/in.) is reasonably

close to optimum from the standpoint of vibration, although the k = 6000 lb/in.
4
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kl = kl =250,000 lb/in. combination is slightly better. However, with

external damping of c = 1.0 lb-sec/in. or larger, the k = k I = kl' = 2000

lb/in. design is superior. This design may not, however, have sufficient

structural rigidity to be practical. Note that if an external damping of

c = 2 lb-sec/in. (350 Nsec) could be achieved through design, then the

maximum weighted gas-film variation would be 0.75 for the combination of
k4 = k1 = kl = 6000 lb/in. Compared to the predicted amplitude ratio of
3.7 for the existing BRU design, this is a reduction of a factor of 5. In
References 1 and 2 it was found that the safe RMS g-level (without significant
shaft-pad touching) that the present BRU can sustain is only 20-25 percent of
the RMS g-level of the specification. It appears, therefore, that one or
more of the configurations considered, together with an appropriate level of
flexure damping, would permit the BRU to be operated at the full specifica-
tion level in the transverse directi n. Should flexure damping of c = 5 lb-
sec/in. be attainable, the maximum weighted gas-film variation would be re-
duced further. The addition of this higher level of damping to the existing
design also appears to be a viable alternative, in view of the fact that
reductions of a factor of about 4.5 to 5 appear possible for such a configura-
tion.

In summary, it appears that the key to a satisfactory flexure design for the
BRU gas bearing pads is the amount of damping that can be realistically added
to the flexure.

Design and Component Test of Flexure Dampers for Journal Bearings

Based upon the preceding analysis of the BRU journal bearing support system,
a significant reduction in lateral rotor vibration may be achieved from the
addition of damping to the 2000 lb/in. (0.35 x 106 N) pad flexure. A flexure
damping level of about 1 to 2 lb-sec/in. (175 to 350 N-sec) was predicted tom
yield measurable pad vibration attenuation (a factor of about 2), while
damping levels of from 5 to 8 lb-sec/in. (875 to 1401 N-sec) were predictedmto yield very significant attenuations (a factor of 5 or more).
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The search for a suitable damper necessarily had to recognize the space

limitation arising from the need to fit the damper into the existing machine,

and the requirement that the added dampers would not compromise the life

expectancy or functional performance of the BRU.

Several damper configurations were considered in light of the foregoing re-

quirements:

a) Oil or other liquid dampers were immediately eliminated from

consideration because of the obvious sealing problems which

would accompany the introduction of a new fluid.

b) Dampers employing one or more elastomer elements were eliminated

because of temperature and lifetime considerations.

c) Coulomb-type dampers were eliminated because of their non-

linearities and because of potential problems with wear of

contacting surfaces.

d) Electromagnetic-type dampers were considered to be feasible,

but were eventually eliminated in favor of the gas-piston type,

primarily because of design uncertainties accompanying such

short stroke lengths (about 0.002 in. (0.05 mm) or less).

e) A gas-piston-type damper, utilizing bearing cavity gas at

cavity ambient conditions, was selected as being most practical

and simplest to implement. No fluids or temperature-sensitive

elements are involved. No rubbing occurs between adjacent

elements, and perhaps most important, design procedures for this

type of device have become well established through MTI's

development of resonant piston compressor technology.

The available space envelope for the damper, located immediately outboard of

the 2000 lb/in. (0.35 N) flexure, permitted the addition of a rectangular
m

piston-in-cavity design of approximately 3 in.2 (20 cm 2) area. The 2-1/4 by

1-1/4 in. (57 x 32 mm) piston was securely pinned to the flexible element of

the flexure assembly. The rectangular cavity was assembled with clearance
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(0.0011in. (0.028 mm) on all four sides) over the piston and rigidly attached

to the rigid part of the original BRU flexure. In the undeflected position,
the clearance between the top of the piston and the bottom of the cavity was

0.018 in. (0.46 mm). When assembled in the BRU simulator, this clearance

decreased to 0.011 in. (0.28 mm) due to flexure deflection under preloading

and operating conditions. Both sides of the original flexure assembly and

the disassembled damper are shown in Figure 10, a composite photograph. Side

2 clearly shows the flexible element in the flexure assembly, which in the

assembled state is gripped at the center location (above the pivot) by two

ears on the underside of the piston. The rectangular cavity of the damper is

visible in Side I in the same photograph. A drawing of the complete flexure-

damper assembly is shown in Figure 11.

The clearance dimensions between damper piston and cavity were derived from

an optimization analysis in which the gaseous medium was nitrogen at 10 psia

(6.9 x 104 N/m2) and 800 F (425 C). The piston (and thus the bearing pad

pivot and flexure) were assumed to vibrate predominantly at 100 Hz with an

amplitude of 0.001 in. (0.025 mm). The vibration values had been found' in

a previous experimental analysis to be representative for the high-response

range (References 2 and 3). The optimum predicted performance of the damper

is shown graphically in Figure 12. Under nominal gap conditions between

piston and cavity, a damping factor in excess of 3 lb-sec/in. (52.5 N-sec)
m

may be expected, and even for a completely de-centered piston (which would,

of course, rub on the cavity walls), a damping factor of better than 2 lb-

sec/in (350 N-sec) is predicted.
m

The completed damper-flexure assemblies were subjected to preliminary perform-

ance testing prior to installation in the BRU simulator.

Each assembly was mounted on a shake table and vibrated at constant table dis-

placement amplitude through the frequency range in which the natural frequency

of the movable mass of the flexure-damper assembly occurred. Measurement of
damper piston amplitude relative to the piston cavity, together with absolute
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motion of the table, provided data from which relative transmissibility values

and the damping in the vibrating system may be calculated. Figure 13(a) shows

the results obtained for 0.0005 in. (0.013 mm) peak-to-peak table vibration

with the flexure-damper assembly in the "as-delivered" condition. The damping

obtained in this assembly is relatively low, as evidenced by the Relative

Transmissibility ratio of 8, and as predicted by prior analysis. Examination

of the analytically-obtained performance trends for the flexure-damper assembly

reveals two reasons for these results:

1. The designed piston-cylinder clearance (above the top of the piston)

was a nominal value of 0.011 in. (0.28 mam). This clearance will

exist after assembly of the flexure-damper assembly into the BRU

(flexure preload) and the lift-off of the bearing pad from the

shaft during operation. The flexure-damper assembly in its 'free'

state (as it existed during preliminary testing) has a top

clearance of 0.018 in. (0.46 mm), a clearance which is predicted

to produce a large reduction in damping.

2. The pneumatic damper has been designed for an operating frequency

of 100 Hz because previously obtained vibration data for the BRU

simulator had indicated maximum vibration responses to occur around

that frequency. However, damping of the flexure-damper assembly

decreases inversely with frequency, resulting in considerably lower

values at those frequencies (around 600 Hz, the damper resonant

frequency) at which the damper assembly was tested.

To achieve better assurance that the damper assembly would meet design specifi-

cations, a temporary plastic shim was attached to the face of the piston, re-

ducing the clearance above the piston to 0.011 in. (0.28 mm). The vibration

tests were then repeated with this configuration. The resultant transmissi-

bility curve in Figure 13(b) clearly shows a significant increase in system

damping, an increase which was predicted within satisfactory limits by analysis.

(The accompanying increase in the system critical frequency is due to the in-

crease in the gas volume stiffness in the damper cavity, which accounts for more
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than half of the total system spring stiffness. The other half is accounted

for by the mechanical spring stiffness of the flexure.)

Additional temporary modifications of the flexure-damper for further preliminary

tests were not made due to their complexity and potential risks to the mechan-

ical integrity of the flexure assembly. For instance, if it has been feasible

to attach approximately five (5) pounds (2 Kg) of mass to the flexure (through

the pivot), the system natural frequency could have been decreased to approx-

imately 100 Hz. Tests under those conditions would have been expected to

indicate the higher level of damping that exists for this device at 100 Hz as

compared to what is shown in Figure 13(b) for 600 Hz.

A final preliminary experimental verification of the damping characteristics

of the flexure-damper assembly was made through temporary increase of the gas

escape path from the piston cavity. Normally (when installed in the BRU

simulator), the only gas escape path exists at the clearance between piston

and cavity. During the final preliminary tests, an additional escape path

was provided around the capacitance probe which was mounted in the cavity

housing for measurement of piston motion relative to the cavity. The results,
shown in Figure 13(c), demonstrated a further increase in damping. Evaluation

of the significance of this increase showed clearly that a corresponding in-

crease in piston clearance would be desirable for a design which was optimized

at a frequency of 600 Hz. Excellent correlation of all preliminary test

results with predictions, however, indicated that the hardware as originally

designed was optimum for provision of damping at 100 Hz.
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EXPERIMENTAL SETUP FOR EVALUATION OF
FLEXURE DAMPERS IN THE BRAYTON ROTATING UNIT

Introduction

In Reference 1,.the BRU simulator without flexure dampers had been subjected

to external sinusoidal and random vibrations which were applied in the rotor

axial direction and in a direction perpendicular to the rotor axis. The re-

sponse of the rotor and of many bearing system components was recorded on

magnetic tape for later analysis. In References 2 and 3, an experimental

analysis was presented which drew upon the data obtained and cataloged in

Reference i. Descriptions of the Test Apparatus (BRU simulator), the test

instrumentation and a description of vibration tests performed may also be

found in Reference 1i, and in abbreviated form .in References 2 and 3.

Since it is the objective of this report to describe a program aimed at a

reduction of the vibration response of the previously examined BRU, pertinent

base line information from Reference 1 through 3 is repeated here for con-

venience. The following section furnishes a brief description of the ip-

strumented basic test apparatus as it was used for the tests described in

References 1 - 3, and also for the tests described in this report.

Test Apparatus

A schematic of the BRU simulator with the rotor in the vertical orientation is

shown in Figure 14. The rotor, from the top down, consists of the following

components:

1. The (simulated) compressor wheel, containing the cold gas simulator
drive turbine.

2. The thrust runner.

3. The compressor end journal.

4. A center section (homopolar generator rotor).

5. The turbine end journal

6. The (simulated) gas turbine wheel.

The three-pad configuration of the gas film journal bearings is shown in cross-

section in Figure 14. The pads are individually supported by pivots, with one
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of the pivots in each bearing assembly mounted on a mechanical flexure. The

flexure, which has a radial stiffness of approximately 2000 pounds per inch

(0.35 x 10 m), permits the bearing to accommodate radial centrifugal growth

of the journal and differential, radial, thermal expansion between the various

bearing parts.

The double-acting thrust bearing is supported by a gimbal assembly with two
sets of gimbals 900 apart. These permit the thrust bearing to align itself

with the thrust runner of the rotor. The surface geometry of the thrust

plates consists of nine equal sectors of 390 each with narrow radial grooves

separating the sectors. Each sector in turn consists of a slightly depressed

sector of 150 arc followed by the raised part in the direction of rotor rota-
tion. Design details for the complete journal and thrust bearing assemblies

are given in Reference 5.

The journal bearings, as well as both thrust bearing plates, have hydrodynamic

and hydrostatic operating capabilities. For hydrostatic operation, each

journal bearing pad and each raised thrust plate sector is equipped with a
small gas supply hole, connected to an outside gas source. Hydrostatic bearing
operation is normally employed to separate the bearing and rotor surfaces at

startup until rotor speed is high enough to produce a sufficiently large gas
film for safe bearing operation. At the design speed of 36,000 rpm and above,
the rotor operates hydrodynamically. The BRU design also requires hydrostatic
bearing operation at shutdown to prevent rubbing contact between the rotor and
the bearing surfaces at speeds too low to provide hydrodynamic film separation
of the bearing surfaces. Prior to the vibration tests described in this
report, all bearing and corresponding rotor surfaces had been coated by MTI
with chrome oxide and refinished to the original dimentional specifications.

This was done to imporve the tolerance of the bearing surfaces against
accidental rubs which might occur in the course of the vibration tests.

When mounted in a support fixture for vibration testing, the simulator is held
without isolators by three mounting brackets extending radially outward from
the simulator casing and resting on the rim of the support fixture. Flexible
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air hoses served to pressurize separately each of the journal bearings, the

thrust bearing plates, the bearing cavity, the thrust loader chamber and the

cold gas drive turbine. Nitrogen at room temperature was used for hydrostatic

bearing operation and to provide the ambient gas atmosphere during all hydro-

dynamic tests.

Test Instrumentation

The dynamic response measurements on the rotor-bearing system were made with

capacitance probes. These probes may be divided for convenience into two

categories: those measuring displacements of the rotor or some bearing com-

ponent relative to the simulator casing, and those measuring gas-film thick-

ness variations between the rotor and the thrust bearing or between the rotor

and any of the journal bearing pads.

Gas-film thickness variations between the rotor and individual journal bearing

pads were measured with capacitance probes built into each pad. These probes,
which were installed by MTI prior to tests, were located next to the pivot on

the inboard side of each bearing pad (a total of six).

Two sets of two probes were used to measure rotor displacement relative to

the simulator casing at two locations inboard of the journal bearings. (The

angular orientation of these capacitance probes is indicated in Figure 15.)

The radial motions of the two flexures supporting each one of the three pads

of each journal bearing were measured near the pivot location relative to

the casing. Pad motions at the pad leading edge were recorded for one solid-

mounted and one flexure-mounted pad. The probe locations in relation to the

rotor are shown in Figure 15. The probes are identified in Figure 16.

Temperatures from nine locations, including both flexure-mounted journal pads,

one solid-mounted pad at the compressor-end journal, and one thrust plate were

recorded by automatic printout throughout the tests.

The root-mean-square values of the random displacement signals were extracted

through application of a true-rms-reading voltmeter, and the tape recorded

BRU random data was further analyzed with the aid of a real-time frequency

analyzer to obtain displacement power spectral density plots.
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VIBRATION TEST RESULTS FOR
BRAYTON ROTATING UNIT WITH JOURNAL BEARING FLEXURE DAMPERS

Test Conditions and Specifications

The BRU simulator was tested under random vibration input conditions with the

shaft in the vertical position (compressor end up). Tests were conducted

with the direction of applied vibrations perpendicular to the rotor axis

(transverse vibration tests) and then repeated with vibrations applied in a

direction along the rotor axis (vertical vibration tests). For the former

tests, the shake table was turned by 900 into the horizontal position and the

simulator was mounted in a different support fixture. During the lateral

vibration tests, the simulator was so oriented that the direction of vibra-

tion passed through the pivot of the flexure-supported journal pad in each

journal bearing. Small-scale schematics of the BRU simulator in either the

transverse or vertical test fixture are shown in all data graphs.

All vibration tests were conducted according to NASA Spec 417-2-C*, which

calls for random vibration input levels (with shaft rotation) of the following

description:

20 - 100 Hz . . . 3 db/octave increase

100 - 2000 Hz. . . 0.015 g 2 /Hz

A graphic representation of the random specification is shown in Figure 17.

Since these tests were not intended as qualification tests, input vibration

levels were raised gradually in small steps until intermittent contacts

between rotor and bearing surfaces were indicated by rapidly rising bearing

temperatures and a steady slowdown in rotor speed. This criterion was used

as the prime indicator for the maximum permissible vibration levels

identified in Figure 17 (for transverse tests only) and in Table I (trans-

verse and axial tests). The values shown in Figure 17 and in Table I

*Environmental Specification of SNAP-8 Electrical Generating System, dated
March 31, 1967.
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TABLE I. BRU RANDOM VIBRATION TOLERANCE LIMITS, g rms*

Direction BRU With BRU Without
of Applied Operating Mode Journal Bearing Journal Bearing
Vibration of Gas Bearings Flexure Dampers Flexure Dampers

All Hydrodynamic 2.80 N.A.

Turbine Journal Brg Hydro-
Thrust Bearing idynamic

** 2.90 1.70
Compressor Jnl Brg-150 psia

All Hydrostatic - 150 psia 4.55 N.A.

All Hydrodynamic 2.15 N.A.

Turbine Journal Brg Hydro-
Thrust Bearing ]dynamic 2.15 2.15

Compressor Jnl Brg-55 psia
Axial

Turbine Journal Brg Hydro
Thrust Bearing Jdynamic 2.30 N.A.

Compressor Jnl Brg-150 psia

Journal Brgs-Hydrodynamic
Thrust Bearing - 150 psia

*Shaped Random Vibrations According to NASA Specifications 417-2-C-3.5.

**150 psia = 106 N/m2

***55 psia = 0.38 x 106 N/m2

are slightly lower (by approximately 0.2 g rms) than those at which rotor
slowdown was observed, and may therefore be considered the maximum levels at
which BRU operation could be maintained.

BRU simulator rotor speed was 36,000 rpm for all tests. Normally, both
journal bearings and the thrust bearing operate hydrodynamically. However,
as a result of a partial structural failure in the compressor end journal
bearing, the previous random vibration tests (BRU without dampers) were
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conducted with the turbine journal bearing and the thrust bearing operating

hydrodynamically and the compressor end journal bearing pressurized from an

outside gas supply. During these tests, the gas supply pressure to the com-

presor end journal bearing was 150 psia (106 N/m2 ) when the vibrations were

applied in the transverse direction and 55 psia (0.38 x 106 N/m 2 ) when

applied along the rotor axis (axial vibration tests).

Random Vibration Tolerance Limits

The above referenced bearing operating conditions were exactly duplicated for

the tests recorded here, because these tests were intended to establish the

difference in vibration tolerance limits of the BRU as a result of the bearing

damper addition. As indicated in Table I and Figure 17, with random vibrations

applied in the transverse direction, the BRU vibration tolerance limit in-

creased from 1.70 g rms to 2.90 g rms. This increase of about 70 percent

represents a definite improvement as a result of flexure damper addition, but

it falls short of the goal of an improvement of more than 300 percent which

would be necessary to meet the BRU random vibration specification limits.

With all bearings operating hydrodynamically, the improvement was slightly

less, with 2.60 g rms recorded for a maximum level.

The addition of flexure dampers did not improve the vibration tolerance of the

simulator when vibrations were applied along the shaft axis. This agrees

perfectly with expectations, and lends credence to the previously-advanced

deduction, based upon examination of experimental data, that the thrust

bearing alone determines simulator vibration tolerance for the axial direction

(Reference 2). For axially-applied vibrations, tolerance limits were identi-

cal when all journal bearings operated fully hydrodynamically and when the

compressor end journal bearing was pressurized to 55 psia. This result again

confirms the secondary role of the journal bearings as a limiting factor in

the axial vibrational mode, at least at vibration levels which constitute the

tolerance limits for the thrust bearings when axial vibrations are applied.

External pressurization of the thrust bearing (to 150 psia) raised the vibra-
tion tolerance of the simulator in the vertical mode to 2.90 g rms. This



-19-

value does not represent a large increase and it does not compare favorably

with the 4.55 g rms level achieved in the transverse mode with all bearings

externally pressurized to 150 psia. The latter results may reflect the re-

duction of journal bearing pad-to-shaft contacts due to the combined effect

of larger gas film clearances obtained by external pressurization and the

improvement in journal bearing flexure vibration due to the addition of

dampers.

The corroborating evidence that confirms the occurrence of intermittent con-

tacts between rotor and bearing surfaces during the final stages of random

vibration testing is supplied by the temperature recordings of the various

bearing elements. Two examples of temperature records are given in Figures

18 and 19. The temperature recording shown in Figure 18 was obtained for

the random test case where vibrations were applied in a transverse direction

and all bearings were operating hydrodynamically. It clearly indicates a

steep temperature rise for both solid and flex-mounted journal bearing pads,
in both bearings.

External pressurization of the compressor end journal bearing for the next

test case had a double effect upon the temperature history of the pads of

that bearing (Figure 19). During the noncontacting phase of the random tests,
the compressor journal bearing pads remained at a temperature of 200F (llC)

below that of the turbine end journal bearing pads. During the final phase

of the test, only the turbine-end journal bearing pads indicate a sharp

temperature rise, with the flexure-mounted pad beginning to show the temper-

ature rise earlier than the solid-mounted pad.

Examination of the temperature records for the vertical random vibration tests

indicates that all tests were terminated due to contacts between the thrust

rotor and the thrust plates.

Amplitude Analysis: Root-Mean-Square (rms) Values

An analysis of all individual displacement signals from the BRU simulator, as
they were recorded on magnetic tape during the vibration tests, can be very
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helpful in identifying the rotating-stationary interface of the bearing

system at which rubbing first begins. Unfortunately, two test-hardware-

connected circumstances have introduced some difficulties and complica-

tions to this analysis. The failure of some of the internal probes in

the simulator during the early phases of the test limits the amount of

information available for exact comparisons. The partial structural failure

in the compressor-end journal bearing during the previous test series (with-

out flexure dampers) introduced the need to operate that journal bearing in

the hydrostat:ic mode. When operating hydrostatically, the journal bearing

has a much larger gas film of appreciably lower stiffness than under hydro-

dynamic operating conditions. Consequently, larger film thickness varia-

tions may be observed in the compressor-end journal bearing than in the

turbine-end bearing without being indicative of greater distress under

external vibration. It must also be remembered that the associated sets of

casing-to-shaft sensors may be accordingly affected by the greater gas-film

clearance in their neighboring journal bearings. The third, and quite

separate, element in the rotor-bearing system is the thrust bearing. The two

masses of the thrust bearing gimbal support, with their different sets of

pivots,-may be expected to show quite different characteristics about their

two perpendicular axes. Finally, the flexure-mounted pad in each journal

bearing will show very different responses than the solid-mounted pads in

the respective bearings. Due to the different modes of journal bearing

operation in some tests, these responses will also be different from each

other. (The physical relationships and locations of the various bearings and

displacement sensors is shown in Figure 15.)

The root-mean-square values of all recorded random displacement and accelera-

tion signals obtained during tests of the BRU simulator with bearing flexure

dampers installed, have been plotted for comparison. Figures 20 through 22

provide three typical examples, taken from the transverse test series, where

the compressor journal had been exteF nally pressurized to 150 psia (106 N/m2).

Figure 20 depicts the stepped increases of input acceleration (in g rms)

applied to the mounting fixture of the BRU simulator on the shake table.

The time base indicates that the dwell time at each of the vibration input
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levels was approximately one minute. (Tests were generally repeated a second

time for complete taping of all signals.) A typical step-for-step response

pattern in displacement amplitude (rms value), as it was obtained for casing-

to-shaft probes, is shown in Figure 21. This response is also typical for

the gas-film thickness variations of the solid-mounted pads. The thrust

bearing generally exhibited quite a different response (Figure 22). After

about three step increases in shake table input acceleration, the thrust

bearing rotor response amplitude has reached values close to the possible

maximum, which corresponds to the full clearance between thrust plates.

Further increases in the shake table vibration input level produce only very

small increases in the response amplitude of the thrust runner. A third

amplitude response plot, shown in Figure 23, is for the film thickness varia-

tion of the flexure-mounted, damped pad in the compressor-end journal bearing

under hydrodynamic operating conditions. The increase in response amplitude

with increasing input level is the smallest observed during the current test

series, as well as in all previous tests without the flexure dampers installed

(Reference i).

The rms amplitude response values from all functioning displacement probes,

obtained at the 1.5 g rms vibration input level, are given in the first two

columns in Table II. These two columns contain values obtained in the current

test series, which was conducted with bearing flexure dampers installed in the

BRU simulator. The third column in Table II has been taken from previously-

obtained data, where the BRU simulator had been tested under identical con-

ditions, but without the newly designed bearing flexure dampers (Reference 1).

Part (a) of Table II refers to data from random vibration tests with the

direction of applied vibrations perpendicular to the rotor axis (transverse

tests). Part (b) refers to tests where the direction of applied vibrations

was along the rotor axis (axial tests).

The second and third column in Part (a) of Table II are of prime interest in

the evaluation of the effectiveness of the newly installed bearing flexure

dampers, because they afford a direct comparison of bearing component responses



TABLE II(a). DISPLACEMENT ROOT-MEAN-SQUARE AMPLITUDES (in. x 104)***

FOR RANDOM VIBRATION INPUT LEVEL OF 1.5 g rms*

Transverse Direction of Applied Random Vibration

With Journal Bearing Without Journal Bearing
Flexure Dampers Flexure Dampers**

Probe All Bearings Turbine Jnl. Brg and Thrust Brg: Hydrodynamic
Ident. Probe Designation Hydrodynamic Compressor Jnl. Brg: Externally-Pressurized 150 psia

A Pivot film thickness probe, flex- 0.5 1.9 2.8
mounted pad, compressor end

B Pivot film thickness probe, solid- 6.5 N.A. N.A.
mounted pad, compressor end

C Pivot film thickness probe, solid- 1.9 2.5 2.5
mounted pad, compressor end

D Pivot film thickness probe, flex- 0.55 N.A. 0.9
mounted pad, turbine end

E Pivot film thickness probe, solid- 2.5 2.25 N.A.
mounted pad, turbine end

F Pivot film thickness probe, solid- 4.0 N.A. 5.0
mounted pad, turbine end

21 Turbine journal flex-mounted pad load 11.0 8.5 8.5
probe

22 Compressor journal flex-mounted pad 4.5 6.8 10.0
load probe

1 Compressor journal orthogonal 3.5 4.5 N.A.
probe

2 Compressor journal orthogonal 4.0 N.A. 9.0
probe

3 Turbine journal orthogonal 5.5 5.8 N.A.
probe

4 Turbine journal orthogonal 5.0 5.5 13.0
probe

19 Turbine thrust plate film thickness 5.5 5.5 4.7
probe

20 Turbine thrust plate film thickness 6.5 5.1 6.5
probe

23 Thrust bearing gimbal probe to casing 3.7 3.0 3.9

24 Thrust bearing gimbal probe to casing 3.3 2.0 3.5

*Shaped Random Vibrations According to NASA Specification 417-2-C-3.5. ***Multiply by 0.00254 to
191gaom Ra&ere~s.



TABLE II(b). DISPLACEMENT ROOT-MEAN-SQUARE AMPLITUDES (in. x 104)

FOR RANDOM VIBRATION INPUT LEVEL OF 1.5 g rms*

Axial Direction of Applied Random Vibration

With Journal Bearing Without Journal Bearing
Flexure Dampers Flexure Dampers**

Probe All Bearings Turbine Journal Brg and Thrust Brg: Hydrodynamic
Ident. Probe Designation Hydrodynamic Compressor Jnl. Brg: Externally-Pressurized 150 psia
C Pivot film thickness probe, solid- 1.8 1.8 2.5

mounted pad, compressor end

E Pivot film thickness probe, flex- 2.5 2.5 N.A.
mounted pad, turbine end

F Pivot film thickness probe, solid- N.A. N.A. 3.0
mounted pad, turbine end

21 Turbine journal flex-mounted pad 2.3 2.5 3.1
load probe

22 Compressor journal flex-mounted pad 1.6 2,2 3.0
load probe

1 Compressor journal orthogonal 1.7 N.A. N.A.
probe

2 Compressor journal orthogonal N.A. N.A. 2.6
probe

3 Turbine journal orthogonal 2.4 2.5 N.A.
probe

4 Turbine journal orthogonal N.A. N.A. 3.2
probe

20 Turbine thrust plate film thickness 7.5 7.7 7.0
probe

23 Thrust bearing gimbal probe to casing 6.0 6.7 6.6

24 Thrust bearing gimbal probe to casing 4.2 4.5 6.3

*Shaped Random Vibrations According to NASA Specification 417-2-C-3.5
**From Reference 1.

***Multiply by 0.00254 to obtain mm.
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under identical test conditions. The film thickness variations of the flexure-

mounted pad in the (hydrostatically pressurized) compressor end journal bearing

show a definite decrease (by about 30 percent) as the result of damper addition.

A similar reduction is observed for the hydrodynamically operating flexure-

supported turbine-end journal bearing pad. The solid-mounted pad in the hydro-

statically operating compressor-end journal bearing shows no change in response

amplitudes, and a similar conclusion is reached for the solid-mounted pads in

the hydrodynamically operating turbine-end journal bearing. The casing-to-

shaft probes show a very significant reduction (over 50 percent) in amplitude
Svariation under all bearing operating conditions. As anticipated, the thrust

bearing probes show little change for all tests.

The second half of Table II gives a similar listing of all rms amplitude values

obtained under axial random vibration input conditions. Except for a reduc-

tion in flexure amplitudes for both test cases where dampers had been installed,

there appear to be no significant amplitude differences between tests at the

vibration input level of 1.5 g rms. The very nearly equal performance at less

than maximum vibration input level points to the possibility that nearly

identical maximum levels might be reached in all three test cases. This agrees

well with the final test results (vibration tolerance limits) given in Table I.

It may be also noted from Table II that thrust bearing amplitudes are very

nearly equal in all three test cases and generally higher than those observed

for transverse vibration applications.

The data presented in Table III give some indication of the maximum displace-

ment rms amplitudes the BRU simulator can tolerate before rotor-to-bearing
contacts occur. The data in Table III was obtained from the same plots of rms

values used for the extracting of values shown in Table II. However, the

values in Table III represent the displacements obtained for maximum vibration

input levels in each of the six individual vibration tests. (Three transverse
and three axial tests.) The maximum vibration input levels associated with

these displacements are those listed in Table I.

Inspection of Table III reveals certain regularities which may indicate the



TABLE III(a). DISPLACEMENT ROOT-MEAN-SQUARE AMPLITUDES (in. x 10 4 )*

FOR MAXIMUM VIBRATION INPUT TEST LEVELS

Transverse Direction of Applied Random Vibration

With Journal Bearing Without Journal Bearing
Flexure Dampers Flexure Dampers (Ref. 1)

All Bearings Turbine Jnl. Brg and Thrust Brg: Hydrodynamic
Hydrodynamic Compressor Jnl. Brg: Externally-Pressurized 150 psia

Probe (Vibr Input , (Vibration Input (Vibration Input
Ident. Probe Designation Level 2 .8 grms) Level 2.9 g rms*) Level 1.7 g rms*)

A Pivot film thickness probe, flex- 0.43 N.A. 3.4
mounted pad, compressor end

B Pivot film thickness probe, solid- 10.0 N.A. N.A.
mounted pad, compressor end

C Pivot film thickness probe, solid- 3.0 4.7 3.3
mounted pad, compressor end

D Pivot film thickness probe, flex- 0.62 N.A. 0.9
mounted pad, turbine end

E Pivot film thickness probe, solid- 5.0 4.7 N.A.
mounted pad, turbine end

F Pivot film thickness probe, solid- 7.0 N.A. N.A.
mounted pad, turbine end

21 Turbine journal flex-mounted pad 16.0 14.0 9.6
load probe

22 Compressor journal flex-mounted pad 6.5 15.0 14.0
load probe

1 Compressor journal orthogonal 4.5 10.0 N.A.
probe

2 Compressor journal orthogonal 5.0 N.A. 10.0
probe

3 Turbine journal orthogonal 6.0 10.0 N.A.
probe

4 Turbine journal orthogonal 6.5 11.0 13.0
probe

19 Turbine thrust plate film thickness 6.0 5.8 N.A.
probe

20 Turbine thrust plate film thickness 7.0 6.3 6.5
probe

23 Thrust bearing gimbal probe to 9.0 9.0 3.9
casing

24 Thrust bearing gimbal probe to casin 4.2 3.8 3.5

*Shaped Random Vibrations According to NASA Specification 417-2-C-3.5. **Multiply by 0.00254 to obtain mm.



TABLE III(b). DISPLACEMENT ROOT-MEAN-SQUARE AMPLITUDES (in. x 104r
FOR MAXIMUM VIBRATION INPUT TEST LEVEL OF 2.15 g rms*I

Axial Direction of Applied Random Vibration

With Journal Bearing Without Journal Bearing
Flexure Dampers Flexure Dampers**

Probe All Bearings Turbine Journal Bearing and Thrust Brg: HydrodynamicIdent. Probe Designation Hydrodynamic Compressor Jnl. Brg: Externally-Pressurized 150 psia
C Pivot film thickness probe, solid- 2.7 2.8 N.A.mounted pad, compressor end

E Pivot film thickness probe, flex- 4.5 4.5 N.A.mounted pad, turbine end

F Pivot film thickness probe, solid- N.A. N.A. 4.0
mounted pad, turbine end

21 Turbine journal flex-mounted pad 6.0 5.0 N.A.load probe

22 Compressor journal flex-mounted pad 2.5 4.2 N.A.load probe

1 Compressor journal orthogonal 3.0 N.A. N.A.
probe

2 Compressor journal orthogonal N.A. N.A. N.A.
probe

3 Turbine journal orthogonal 4.5 5.0 N.A.
probe

4 Turbine journal orthogonal N.A. N.A. 5.3
probe

20 Turbine thrust plate film thickness 8.5 8.5 7.0
probe

23 Thrust bearing gimbal probe to casing 12.0 9.8 9.5

24 Thrust bearing gimbal probe to casing 9.0 7.3 10.5

*Shaped Random Vibrations According to NASA Specification 417-2-C-3.5.
**From Reference 1.
***Multiply by 0.00254 to obtain mm.
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vibration tolerance limits of individual bearing system components. For

example, with transverse vibrations, the maximum rms casing-to-shaft (probes

1 through 4) amplitudes are between 10 and 13 x 10-4 in. (0.025 to 0.032 mm),*

both with and without bearing flexure dampers, but only when the compressor-

end journal bearing was pressurized to 150 psia (106 N/m2). Without external

pressurization of the compressor-end journal bearing (all bearings operating

hydrodynamically), the maximum observed casing-to-shaft displacement rms

amplitudes are only 6.5 x 10-4 in. (0.017 mm). The pad-to-shaft film thick-

ness variations of the solid-mounted pads under externally-pressurized con-

ditions may possibly have reached their maximum operating limits with

recorded maximum values of 7 to 10 x 10-4 in. (0.018 to 0.025 mm). Inspection

of the axial vibration data table shows clearly the noncritical aspects of all

journal bearing displacements in this mode. Solid-mounted pad-to-shaft,

casing-to-shaft, and flexure amplitudes are all much lower than those obtained

under transverse vibration. The thrust bearing and the thrust bearing gimbal

probes indicate, however, the expected maximum values.

Frequency Analysis: Displacement Power Spectral Density

When random vibration data is put through a narrow frequency band pass filter,
all random amplitude signals that occur in that particular frequency band are

permitted to pass. As the center frequency of the filter is moved through

the frequency range of interest, an amplitude density spectrum is obtained.

Since the units of amplitude densities are those of the data squared, per unit

frequency, they are usually referred to as power spectral density (PSD) values.

When the frequency is given in Hz, and when the data is displacement amplitude,
(instead of for example acceleration), the units of this analysis are in.2/Hz.

The significance of the frequency analysis for the BRU simulator is in the

determination of resonant frequencies for the hardware components whose dis-

placement signals were analyzed, and in the concurrent determination of the

*Displacement rms values of the BRU simulator cannot readily be converted to
peak-to-peak values due to the non-Gaussian character of most of the observed
amplitude distributuons. For a detailed analysis of BRU amplitude probability
distributions see References 2 and 3.
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relative severity of the resonances (amplitude density). When the external

vibration input acceleration (or input displacement) is used as a base line

for comparison, the relative gain or attenuation of the vibrating part may

be determined at each particular frequency. Comparison of the new frequency

spectra obtained from the damper-equipped BRU, with similar data previously

obtained from the simulator without dampers (References 2, and 3), can also

be expected to reveal the effectiveness of the frequency-tuned dampers in

suppressing the most substantial resonances in the 100 to 400 Hz region.

Most of the previously-obtained displacement power spectral density plots

(BRU without damper) had been obtained at the input level of 1.5 g rms, which

represented the maximum value for which data was available from both transverse

and axial tests. To facilitate a meaningful comparison, the new data obtained

from the evaluation reported here has also predominantly been analyzed at the

same input level of 1.5 g rms. For one test series (transverse vibration,
compressor end journal bearing externally pressurized), the random response

data obtained at the maximum test input level (3 g rms) has been analyzed for

the purpose of providing an indication of the amount of increases at sp.ecific

resonance frequencies that might be expected from a known amount of input

level increase (from 1.5 g rms to 3 g rms). The displacement PSD plots obtained

from the experimental data for the BRU with bearing flexure dampers may be

directly compared with the previously presented data for the BRU without

dampers, as given in References 2 and 3. Some of the PDS analysis plots from

the data in Reference 2 have been re-run from magnetic tape as part of the

instrumentation repeatability assurance process. Some are presented here for
comparison, although any PSD plot from Reference 2 or 3 representing the

appropriate vibration input level may be used for the same purpose.

The comparative evaluation of the displacement power spectral density plots

has to take into consideration the inherent difficulty that arises from the
attempt to compare peak values of relatively undamped resonances. Although
the evaluation of the total area under a resonance peak that exceeds the
vibration input level might perhaps be a better method, the comparison of
peak values has been chosen for this study. Attention is focused for the most
part on the frequency range between 100 and 400 Hz, which had already
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previously been identified as the frequency band in which the most severe and

significant journal bearing resonances occur. (The thrust bearing gas-film

resonance which occurs at about 60 Hz, and the once-per-revolution runout

and/or lateral dynamic unbalance response of the rotor occurring at the

rotational frequency of 600 Hz may be clearly observed in all appropriate

power spectral density plots, but are of no real concern or interest in this

evaluation.)

Before examining the detailed test results which illustrate the effects of

the dampers, it is instructive to return briefly to the earlier work reported

in Reference 2 to understand the behavior of the BRU without the dampers.

Comparison of Figures 24 and 25, taken from Reference 2, illustrates the

relative vibration levels between the solid-mounted pads and journals in

the damper-less BRU, for the compressor-end and turbine-end bearings,

respectively. (Note that the former was operated hydrostatically and the

latter hydrodynamically.) These figures show clearly the predominant vibra-

tion peaks in the region of 100-150 Hz which the dampers were subsequently

designed to suppress. Comparison of these peaks, and also the peaks at

higher frequencies, relative to the dashed input line, shows that the ampli-

tudes are generally less severe (lower relative vibration) in the hydro-

statically-operating compressor-end bearing than in the hydrodynamically-

operating turbine-end bearing. The peak values are 5 x 10- 9 in.2/Hz (3.2 x

10- 12 m 2/Hz) in Figure 25 for the turbine-end, and 8 x 10-10 in. 2/Hz (5.2 x

10 m 2/Hz) in Figure 24 for the compressor-end, a ratio of about 6.3 to 1

in displacement power spectral density. This is equivalent to a ratio of

about 2.5 to 1 in rms displacement terms. The above results indicate that

the solid-mounted (hydrostatic) compressor-end bearing pads track the

journal better (less relative motion) than do the solid-mounted (hydro-

dynamic) turbine-end bearing pads.

Comparison of Figures 26 and 27, also taken from Reference 2, illustrates the

relative vibration levels between the flexure-mounted pads and journals in
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the damper-less BRU for the compressor-end and turbine-end bearings,

respectively. Again, these figures show the major peaks in the 100 Hz

region, as well as a significant peak in the 300-500 Hz region. The peaks

in the hydrostatically-operating compressor-end bearing flexure-mounted pad

are slightly higher, generally, than those in the hydrodynamic turbine-end

bearing. The peak values (of the 100 Hz peak) are 4 x 10- 11 in. 2/Hz (2.5 x

10- 14 m2/Hz) in Figure 27 for the turbine-end and 7 x 10-11 in.2/Hz (4.5 x

10-14 m 2/Hz) in Figure 26 for the compressor-end, or a ratio of about 1 to

1.75 in displacement power spectral density. This is equivalent to a ratio

of about 1 to 1.3 in rms displacement terms. These results indicate that

the flexure-mounted (hydrostatic) compressor-end bearing pad tracks the

journal somewhat less accurately than does the flexure-mounted (hydrodynamic)

turbine-end bearing pad.

Comparison of the magnitudes of the 100 Hz peaks in Figures 24 and 26 for the

compressor-end bearing, and Figures 25 and 27 for the turbine-end bearing

shows the ability of the flexure-mounted pads to track the journal under dif-

ferent operating conditions:

Solid-Mounted Pad Flexure-Mounted Pad

Compressor-End 8 x 10 in. /Hz 7 x 10-11 in.2/Hz
Bearing 10-13 2 -14 2
(Hydrostatic) (5.2 x 10 m /Hz) (4.5 x 10 m /Hz)
(Hydrostatic)

Turbine-End 5 x 10 in. 2/Hz 4 x 10 in. 2/Hz
Bearing -12 2 -14 2
HBearing (3.2 x 10 m 2/Hz) (2.6 x 10 m14 /Hz)
(Hydrodynamic)

From these PSD values, the peak amplitudes of the 100 Hz peaks may be deter-

mined, if desired, by the equation:

A(rms) = PSD x Filter Width

where Filter Width = 6 Hz.
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Comparisons of square roots of ratios of the above PSD values show that in

the hydrostatic compressor-end bearing, the flexure-mounted pad-to-journal

relative motion is lower by about a factor of three than that of the solid-

mounted pad. The difference in the turbine-end bearing, on the other hand,

is about a factor of 10.

Having examined the dynamic behavior of the BRU without dampers, we turn

next to a comparison of the relative pad-to-journal motions resulting from

introduction of the dampers, with the foregoing data. This comparison may

be made between Figures 25 and 28 for the solid-mounted turbine-end pad

(hydrodynamic operation). Additional data may be obtained through a com-

parison between Figures 24 and 29 for one solid-mounted compressor-end pad

(hydrostatic operation), and between Figures 26 and 30 
for the flexure-

mounted compressor-end pad (hydrostatic operation). However, in the latter

two cases it should be noted that the dampers have not been designed for 
the

hydrostatic condition of the compressor-end bearing. The additional stiff-

nexx and damping provided by the damper may hot be optimum for that condition,

and may even increase the amplitude of the pad-to-journal relative motion.

Examination of Figures 25 and 28 discloses clearly the beneficial result 
of

the damper upon the BRU in its hydrodynamic design condition. The 100 Hz

peak in the displacement PSD plot has a magnitude of about 5 x 10- 9 in. /Hz

(3.2 x 10- 1 2 m2/Hz) in Figure 25, while in Figure 28 the peak has ani-10 2 013

amplitude of only about 8 x 10-10 in.2/Hz (5.2 x 10-13 m2/Hz). This amounts

to a reduction by about a factor of 6 in the PSD level, or about a factor of

2.5 in displacement. Note that this comparison is made through the use of

probes E and F, which were located in different solid-mounted pads 
in the

turbine-end bearing. Vibrations in these pads are essentially identical

because of symmetry in the externally-applied vibration relative to the pad

axes.

Examination of Figures 24 and 29, and Figures 26 and 30 discloses that the

presence of the damper during hydrostatic operation causes increased relative
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vibration levels in both the solid-mounted and the flexure-mounted 
pads. In

Figures 24 and 29 it is observed that the amplitude of the 100 Hz peak in-

creases from about 8 x 10 in.2/Hz to about 1.5 x 10
-9 in.2/Hz (5.2 x 10-13

to 2.2 x 10-12 m 2/Hz). In Figures 26 and 30, the amplitude of the 100 Hz

peak increases from about 7 x 10-11 in.2/Hz to about 
4 x 10-10 in.2/Hz (4.5 x

10-14 to 2.6 x 10 m2/Hz). While these increases are not excessive in terms

of amplitudes in a hydrostatic bearing (with its larger operating films) it

is essential to note that off-design operation of a gas-lubricated rotor-

bearing system equipped with dampers may result in increased vibration levels

in the lubricating films. Nevertheless, the damper can be very beneficial

during design-condition operation.

It is worth noting in passing the relative vibration levels between the solid-

mounted and flexure-mounted pads in the compressor-end bearing, with that

bearing operating hydrostatically after addition of the dampers. This com-

parison may be made through Figures 29 and 30 and subsequent comparison 
with

Figures 24 and 26:

Solid-Mounted Pad Flexure-Mounted Pad

-10 2 -11 2
Without Damper 8 x 10 in. /Hz 7 x 10 in. /Hz

-13 2 -14 2
(5.2 x 10 m 2/Hz) (4.5 x 1014 m 2/Hz)

-9 2 -10 2
With Damper 1.5 x 10 in. /Hz 4 x 10 in. 2/Hz

-12 2 -14 2
(2.2 x 10 m /Hz) (2.6 x 10 m /Hz)

From this data, it may be observed that the effect of the damper is to reduce

the difference between the solid-mounted and flexure-mounted pad relative

vibration levels. In effect, proportionally larger changes occur in the

flexure-mounted pad vibration levels than occur in the vibration levels of

the solid-mounted pads.

The foregoing completes the before-after comparisons of damper effectiveness

under the precise conditions for which the damper-less BRU was tested (e.g.,
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compressor-end bearing hydrostatic, turbine-end bearing hydrodynamic). We

turn now to an examination of the vibration behavior of the BRU at its

design condition (all bearings hydrodynamic) with the dampers installed.

The compressor-end bearing probes are expected to display the most significant

changes with changeover of that bearing's operation from hydrostatic to hydro-

dynamic. Examination of Figures 29 and 31 shows the effect of this change-

over in the solid-mounted pad. In those Figures it may be seen that the

100 Hz peak drops from about 1.5 x 10-9 in. 2/Hz (2.2 x 10-12 m 2/Hz) to about
-10 2 -13 28 x 1010 in. 2/Hz (5.2 x 10 m 2/Hz). A similar trend is seen for the

flexure-mounted pad in Figures 30 and 32. There, the 100 Hz peak drops from
-10 2 -13 2 -11 2about 4 x 10 in. 2/Hz (2.6 x 10 m 2/Hz) to about 3 x 10 in. 2/Hz (1.9 x

10-14 m 2/Hz). It is also worth noting that in both Figures 31 and 32 the

100 Hz peak moves up to about 120 Hz, reflecting an overall increase in

bearing stiffness as a result of the changeover from hydrostatic to hydro-

dynamic operation.

Figures 28 and 33 illustrate the effect of this changeover in the compressor-

end bearing on the turbine-end bearing solid-mounted pads. This bearing was

operated hydrodynamically in all testing. The net effect on the 100 Hz peak
from Figure 28 to Figure 33 is an increase from about 8 x 10 in. 2/Hz

(5.2 x 10-13 m2/Hz) to about 1.5 x 10-9 in.2/Hz (9.7 x 10-13 m2/Hz). This

increase is attributed to the increased stiffness of the hydrodynamic

compressor-end bearing, and the more uniform lateral motion along the rotor

axis which accompanies symmetric bearing stiffness in a two-bearing system.

We turn next to an examination of the effect of the damper on the relative

vibration in the turbine-end bearing pads. This bearing was operated hydro-

dynamically during all tests. The solid-mounted pad probe readings are

displayed in Figures 33 and 25, which were obtained with and without the

dampers, respectively. In Figure 25, the level of the 100 Hz peak is about
-9 2 -12 25 x 10-9 in. /Hz (3.2 x 10 m 2/Hz), while in Figure 33 the peak drops to

-9 2 -13 2
about 1.5 x 10-9 in. /Hz (9.7 x 10 m /Hz). In light of the fact that
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going from hydrostatic to hydrodynamic operation in the compressor-end

bearing increases the vibration level in the solid-mounted turbine-end

bearing pads (compare Figures 28 and 33), the foregoing net decrease in-

dicates considerable positive effect of the damper in Jibration reduction.

The turbine-end bearing flexure-mounted pad probe readings are displayed in

Figures 34 and 27, which were obtained with and without the dampers, respec-

tively. In Figure 27 the level of the 100 Hz peak is about 7 x 10-11 in. 2/Hz

(4.5 x 10-14 m2/Hz), while in Figure 34 the peak drops to about 3 x 10-1 2

in. /Hz (1.9 x 10-15 m 2/Hz), a significant reduction.

Finally, we turn to an examination of the effects of increased external

vibration input level on the dynamic behavior of the BRU with dampers. It

is possible to examine this effect most directly in the turbine-end

bearing, through comparison of Figures 28 and 35. In Figure 28, the level
-10 2 -13 2

of the 100 Hz peak is about 8 x 10-10 in. 2/Hz (5.2 x 10 m 2/Hz), while the

input curve is 1 x 10-9 in.2/Hz (6.45 x 10 13m 2 /Hz) at 150 Hz. In Figure

35 the input curve has increased to about 5 x 10-9 in.2/Hz (3.2 x 10-12

m2 /Hz) at 150 Hz while the level of the 100 Hz peak has increased to 3 x

10-9 in.2 /Hz (1.9 x 10- m12 m2/Hz). While the input level went up by a factor

of 5, the response at the 100 Hz peak increased only by a factor of about

3.7, indicating that more energy absorption was taking place at the higher

input level.

Similar comparisons may be made for the compressor-end bearing, although

these comparisons may only be made with hydrostatic operating conditions.

Figures 29 and 36 may be used for this purpose for the hard-mounted pads,
while Figures 30 and 37 may be used for the flexure-mounted pad. Figures 29

and 36 show that for the same vibration input level increase as quoted above,
a factor of 5, the 100 Hz peak level went from about 1.5 x 10-9 in. 2/Hz

(9.7 x 10- 13 m2/Hz) to about 4 x 10-9 in.2/Hz (2.6 x 10-12 m2/Hz), an in-

crease by a factor of only about 3. Figures 30 and 37 show an increase of

from 4 x 10-10 in.2/Hz (2.6 x 10-13 m2/Hz) to about 6 x 10-10 in.2/Hz (3.9

x 10 m /Hz), a factor of only about 1.5.
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It is worth noting, for the fully hydrodynamic operating condition with

dampers, the degree to which the data from the compressor-end bearing pads

matches that from the turbine-end bearing pads. Comparison of Figures 33

and 31 for the solid-mounted pads in the turbine-end and compressor-end

bearings, respectively, indicates that both pads are quite similar dynamical-

ly. Comparison of Figures 34 and 32 for the flexure-mounted pads in the

turbine-end and compressor-end bearings, respectively, however, shows that

the flexure-mounted pads are quite different, dynamically. The turbine-end

bearing response is lower by 1.5 to 2 orders of magnitude compared to the

compressor-end bearing over a wide frequency range, from 50-1000 Hz. No

apparent reason exists for this difference.

The PSD plots for the casing-to-shaft sensor (probe No. 1) that was located

near the hydrostatically operated compressor-end journal bearing shows

(Figure 38) no change when compared with the base line value in Figure 39.

The two sensors near the hydrodynamically-operating turbine-end journal

bearing (Figures 40 and 41) indicate slightly lower PSD values, and remain

unchanged during the test when both journal bearings were operating hydKo-

dynamically (Figures 42 and 43).

When the compressor-end journal bearing was operating hydrodynamically, the

PSD values (Figure 44 and 45) were lower than during hydrostatic tests

(Figure 38) and also lower than for the turbine end journal bearing (Figures

40 through 43).

The flexure of the compressor-end journal bearing (probe 22) and the leading

edge of a solid-mounted pad did not show significant variations between opera-

tions with or without dampers. It was noted however that resonances increased

much more sharply at the higher input level (3 g rms) for the flexure of the

hydrostatically operating compressor journal bearing than for the hydro-

dynamically operating turbine-end journal bearing. This sharp increase in

flexure motion must be seen in conjunction with the decrease in pad-to-

rotor film variations, indicating relatively increased "tracking" by the

flexure-mounted pad of the rotor as the vibration level increases.
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Results for the thrust bearing gas film thickness variation show virtually

no change for the transverse test series, which confirms earlier findings.

The results for the axial vibration tests were similarly examined, but only

minimal changes were found. Consequently, no PSD plots are given in this

report. (The original data is, of course, still available on magnetic tape

for further study.)
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CONCLUSIONS

The primary objective of the work reported in this volume was assessment of

the ability of constrained-volume dampers to reduce the vibration levels in

the gas films of the BRU journal bearing pads. This objective was achieved

via the following steps:

1. An experimental analysis of previously-obtained vibration data,

to identify the frequencies of interest and the relative severity

of the associated resonances;

2. An analytical study of the lateral vibration characteristics of

the BRU journal bearing and pads, in order to determine the

desired levels of pad-mount flexure stiffness and damping, and

to assess the impact of various design alternatives on the pad

gas-film vibration levels;

3. An experimental study of the effectiveness of dampers which had

been built and installed based upon the results of the analytical

study.

The conclusions drawn from the analytical study may be summarized as follows:

1. For pad support flexure stiffnesses as currently designed (250,000

lb/in. (43.78 x 106 N/m) for the two solid-mounted pads and 2000

lb/in. (0.35 x 106 N/m) for the flexibly-mounted pad), and with

vibrations in the direction of the flexibly-mounted pad, the solid-

mounted pad experiences the highest gas-film response amplitudes.

2. If both solid flexures are replaced by "soft" flexures (2000 lb/in.

(0.35 x 106 N/m)), the resulting system lateral natural frequencies

do not drop below the upper limit of the sinusoidal vibration spec-

ification of 35 Hz. Thus, the BRU with soft flexures on each pad

would not be expected to have a resonance within the sinusoidal

vibration specification limits.

3. For low values of damping in the flexures, the current design
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(250,000 lb/in. - 2000 lb/in. (43.78 x 106 N/m - 0.35 x 106 N/m))

was found to be near optimum in terms of predicted gas-film response

amplitudes. The 250,000 lb/in - 6000 lb/in. (43.78 x 106 N/m -

1.05 x 106 N/m)) combination was found to be slightly better.

4. With increasing values of damping in all flexures, the all-soft-

flexure configuration is predicted to be superior.

The conclusions drawn from the experimental damper investigation may be

summarized as follows:

1. Temperaturerecordings from thermocouples located on journal bearing

pads and thrust bearing plates indicate that when external vibration

is applied to the BRU, contact between rotor and bearings occurs

first in the journal bearings with lateral vibration inputs, and

first in the thrust bearings with axial vibration inputs.

2. When random vibration was applied laterally to the BRU with one

journal bearing externally pressurized, rapid temperature rises due

to intermittent contact between journal and pads appeared only in

the hydrodynamically-operating bearing.

3. Addition of the two dampers was found to increase by 70 percent the

externally-applied lateral vibration levels at which the BRU could

be operated without journal-to-pad rubs. As expected, no improve-

ment was noted for externally-applied vibrations in the axial direc-

tion.

4. With both journal bearings pressurized (hydrostatic operation)and

without dampers, the lateral vibration tolerance limit increases

significantly compared to the limit with hydrodynamic operation

(from 1.7 g rms to 4.55 g rms, a 265 percent increase). With the

thrust bearing pressurized on the other hand, the vibration tolerance

limit for axial vibration increases from 2.15 g rms to only 2.9 g rms,

a 35 percent increase. Thus, the journal bearings are more vibration

resistant than the thrust bearing for hydrostatic operation.
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5. The chrome-oxide coated bearing surfaces survived repeated high-

speed contacts without apparent ill effect. Rotor speed was

reduced by bearing rubbing, at constant turbine inlet pressure,

approximately six times with lateral external vibration and

approximately six times with axial external vibration.

6. Analysis of vibration measurements shows that addition of the dampers

yielded not only reduced pad vibration levels (film thickness varia-

tions), but also reduced rotor-to-casing vibration levels as well.

7. When the BRU was operated without the dampers, the solid-mounted

pads were found to have lower vibration levels (film thickness

variations) under hydrostatic operation than under hydrodynamic

operation.

8. When the BRU was operated without dampers, the flexibly-mounted

pads were found to have slightly higher vibration levels (film

thickness variations) under hydrostatic operation than under

hydrodynamic operation.

9. Based upon amplitude power spectral density values, the addition

of the dampers reduces peak vibration levels in the solid-mounted,

hydrodynamically-operating pad gas films by a factor of six. The

dampers were found to produce an increase in pad-to-shaft gas film

vibration under hydrostatic conditions for the same vibration input

levels.
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PROXIMITY PROBE DESIGNATION
ON BRU SIMULATOR

Probe
Identification Proximity Probe Designation

A Pivot film thickness probe, flex-mounted pad, compressor end

B Pivot film thickness probe, solid-mounted pad, compressor end

C Pivot film thickness probe, solid-mounted pad, compressor end

D Pivot film thickness probe, flex-mounted pad, turbine end

E Pivot film thickness probe, solid-mounted pad, turbine end

F Pivot film thickness probe, solid-mounted pad, turbine end

1 Compressor journal orthogonal probe

2 Compressor journal orthogonal probe

3 Turbine journal orthogonal probe

4 Turbine journal orthogonal probe

9 Flex-mounted pad leading edge probe, compressor end

11 Solid-mounted pad leading edge probe, compressor end

13 Flex-mounted pad leading edge probe, turbine end

17 Compressor thrust plate film thickness probe

19 Turbine thrust plate film thickness probe

20 Turbine thrust plate film thickness probe

21 Turbine journal flex-mounted pad load probe

22 Compressor journal flex-mounted pad load probe

23 Thrust bearing gimbal probe to ground

24 Thrust bearing gimbal probe to ground

Fig. 16 Capacitance Probes Used On BRU Simulator For Vibration
Testing
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Dampers Under Externally-Imposed Shaped Random Vibrations (1.35 g rms
Input) According To NASA Spec 417-2-C-3.5 (All Bearings Hydrodynamic)
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